The vertex of a parabola is a crucial point representing either its maximum or minimum value. Finding the vertex depends on how the quadratic function is presented. Here's a breakdown:
Standard Form: If your quadratic function is in the form f(x) = ax² + bx + c, you can find the x-coordinate of the vertex using the formula: x = -b / 2a. Then, substitute this x-value back into the original equation to find the corresponding y-coordinate, giving you the vertex (x, y). The link for the formula is: x = -b / 2a
Vertex Form: If your quadratic function is in the vertex form f(x) = a(x - h)² + k, the vertex is simply the point (h, k). Note that the x-coordinate is the opposite of the value inside the parenthesis. The link for the vertex form is: Vertex Form
Factored Form: If your quadratic is in factored form, f(x) = a(x - r₁)(x - r₂), where r₁ and r₂ are the roots (x-intercepts) of the equation, the x-coordinate of the vertex is the average of the roots: x = (r₁ + r₂) / 2. Then, substitute this x-value back into the original equation to find the y-coordinate.The link for the Factored form is: Factored Form
Once you have the vertex coordinates, you know either the maximum or minimum point of the parabola. If a > 0, the parabola opens upwards and the vertex represents the minimum value. If a < 0, the parabola opens downwards and the vertex represents the maximum value. The link for a value is: a value
Ne Demek sitesindeki bilgiler kullanıcılar vasıtasıyla veya otomatik oluşturulmuştur. Buradaki bilgilerin doğru olduğu garanti edilmez. Düzeltilmesi gereken bilgi olduğunu düşünüyorsanız bizimle iletişime geçiniz. Her türlü görüş, destek ve önerileriniz için iletisim@nedemek.page